Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions.

نویسندگان

  • Jianqing Fan
  • Quefeng Li
  • Yuyan Wang
چکیده

Data subject to heavy-tailed errors are commonly encountered in various scientific fields. To address this problem, procedures based on quantile regression and Least Absolute Deviation (LAD) regression have been developed in recent years. These methods essentially estimate the conditional median (or quantile) function. They can be very different from the conditional mean functions, especially when distributions are asymmetric and heteroscedastic. How can we efficiently estimate the mean regression functions in ultra-high dimensional setting with existence of only the second moment? To solve this problem, we propose a penalized Huber loss with diverging parameter to reduce biases created by the traditional Huber loss. Such a penalized robust approximate quadratic (RA-quadratic) loss will be called RA-Lasso. In the ultra-high dimensional setting, where the dimensionality can grow exponentially with the sample size, our results reveal that the RA-lasso estimator produces a consistent estimator at the same rate as the optimal rate under the light-tail situation. We further study the computational convergence of RA-Lasso and show that the composite gradient descent algorithm indeed produces a solution that admits the same optimal rate after sufficient iterations. As a byproduct, we also establish the concentration inequality for estimating population mean when there exists only the second moment. We compare RA-Lasso with other regularized robust estimators based on quantile regression and LAD regression. Extensive simulation studies demonstrate the satisfactory finite-sample performance of RA-Lasso.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methods for regression analysis in high-dimensional data

By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...

متن کامل

The Effect of Antenna Movement and Material Properties on Electromagnetically Induced Transparency in a Two-Dimensional Metamaterials

Increasing development of nano-technology in optics and photonics by using modern methods of light control in waveguide devices and requiring miniaturization and electromagnetic devices such as antennas, transmission and storage as well as improvement in the electromagnetic tool, have led researchers to use the phenomenon of electromagnetically induced transparency (EIT) and similar phenomena i...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

Robust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data

Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...

متن کامل

A NEW APPROACH FOR PARAMETER ESTIMATION IN FUZZY LOGISTIC REGRESSION

Logistic regression analysis is used to model categorical dependent variable. It is usually used in social sciences and clinical research. Human thoughts and disease diagnosis in clinical research contain vagueness. This situation leads researchers to combine fuzzy set and statistical theories. Fuzzy logistic regression analysis is one of the outcomes of this combination and it is used in situa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the Royal Statistical Society. Series B, Statistical methodology

دوره 79 1  شماره 

صفحات  -

تاریخ انتشار 2017